CJ:Código empresarial
M: Disjuntor de caixa moldada
1: Design No
□:Corrente nominal do quadro
□: Código característico de capacidade de ruptura/S indica tipo padrão (S pode ser omitido) H indica tipo superior
Nota: Existem quatro tipos de polo neutro (polo N) para produtos de quatro fases. O polo neutro do tipo A não possui elemento de disparo por sobrecorrente, está sempre ligado e não é ligado ou desligado juntamente com os outros três polos.
O polo neutro do tipo B não possui dispositivo de disparo por sobrecorrente e é ligado ou desligado juntamente com os outros três polos (o polo neutro é ligado antes de ser desligado). O polo neutro do tipo C possui dispositivo de disparo por sobrecorrente e é ligado ou desligado juntamente com os outros três polos (o polo neutro é ligado antes de ser desligado). O polo neutro do tipo D possui dispositivo de disparo por sobrecorrente, está sempre ligado e não é ligado ou desligado juntamente com os outros três polos.
| Nome do acessório | Lançamento eletrônico | Liberação composta | ||||||
| Contato auxiliar, liberação por subtensão, contato alam | 287 | 378 | ||||||
| Dois conjuntos de contatos auxiliares, contato de alarme | 268 | 368 | ||||||
| Liberação de derivação, contato de alarme, contato auxiliar | 238 | 348 | ||||||
| Disparo por subtensão, contato de alarme | 248 | 338 | ||||||
| contato auxiliar de alarme | 228 | 328 | ||||||
| contato de alarme de liberação de derivação | 218 | 318 | ||||||
| Disparo por subtensão do contato auxiliar | 270 | 370 | ||||||
| Dois conjuntos de contatos auxiliares | 260 | 360 | ||||||
| Disparo por derivação, disparo por subtensão | 250 | 350 | ||||||
| contato auxiliar de liberação de derivação | 240 | 340 | ||||||
| Disparo por subtensão | 230 | 330 | ||||||
| Contato auxiliar | 220 | 320 | ||||||
| Liberação de shunt | 210 | 310 | ||||||
| Contato de alarme | 208 | 308 | ||||||
| Sem acessórios | 200 | 300 | ||||||
| 1. Valor nominal dos disjuntores | ||||||||
| Modelo | Imax (A) | Especificações (A) | Tensão nominal de operação (V) | Tensão de isolamento nominal (V) | UTI (kA) | Ics (kA) | Número de polos (P) | Distância de arco (mm) |
| CJMM1-63S | 63 | 6,10,16,20 25,32,40, 50,63 | 400 | 500 | 10* | 5* | 3 | ≤50 |
| CJMM1-63H | 63 | 400 | 500 | 15* | 10* | 3,4 | ||
| CJMM1-100S | 100 | 16,20,25,32 40,50,63, 80.100 | 690 | 800 | 35/10 | 22/5 | 3 | ≤50 |
| CJMM1-100H | 100 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-225S | 225 | 100,125, 160,180, 200.225 | 690 | 800 | 35/10 | 25/5 | 3 | ≤50 |
| CJMM1-225H | 225 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-400S | 400 | 225.250, 315.350, 400 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-400H | 400 | 400 | 800 | 65 | 35 | 3 | ||
| CJMM1-630S | 630 | 400.500, 630 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-630H | 630 | 400 | 800 | 65 | 45 | 3 | ||
| Nota: Quando os parâmetros de teste para 400V, 6A sem aquecimento forem utilizados, a liberação deve ser feita. | ||||||||
| 2. Característica de operação de interrupção em tempo inverso quando cada polo do relé de sobrecorrente para distribuição de energia é energizado simultaneamente. | ||||||||
| Item de teste Corrente (I/In) | Área de tempo de teste | Estado inicial | ||||||
| Corrente sem disparo 1,05 pol. | 2h(n>63A),1h(n<63A) | Estado frio | ||||||
| Corrente de disparo 1,3 pol. | 2h(n>63A),1h(n<63A) | Proceda imediatamente após o teste nº 1 | ||||||
| 3. Característica de operação de frenagem em tempo inverso quando cada polo de sobre- O dispositivo de proteção do motor é acionado simultaneamente. | ||||||||
| Definindo o estado inicial do tempo convencional atual | Observação | |||||||
| 1.0 em | >2h | Estado frio | ||||||
| 1,2 polegadas | ≤2h | Prosseguiu imediatamente após o teste nº 1. | ||||||
| 1,5 polegadas | ≤4min | Estado frio | 10≤In≤225 | |||||
| ≤8min | Estado frio | 225≤In≤630 | ||||||
| 7,2 polegadas | 4s≤T≤10s | Estado frio | 10≤In≤225 | |||||
| 6s≤T≤20s | Estado frio | 225≤In≤630 | ||||||
| 4. A característica de operação instantânea do disjuntor para distribuição de energia deve ser definida como 10in+20%, e a do disjuntor para proteção do motor deve ser definida como 12ln±20%. |
CJMM1-63, 100, 225, Dimensões de contorno e instalação (Conexão da placa frontal)
| Tamanhos (mm) | Código do modelo | |||||||
| CJMM1-63S | CJMM1-63H | CJMM1-63S | CJMM1-100S | CJMM1-100H | CJMM1-225S | CJMM1-225 | ||
| Tamanhos de contorno | C | 85,0 | 85,0 | 88,0 | 88,0 | 102,0 | 102,0 | |
| E | 50,0 | 50,0 | 51,0 | 51,0 | 60,0 | 52,0 | ||
| F | 23.0 | 23.0 | 23.0 | 22,5 | 25,0 | 23,5 | ||
| G | 14.0 | 14.0 | 17,5 | 17,5 | 17.0 | 17.0 | ||
| G1 | 6,5 | 6,5 | 6,5 | 6,5 | 11,5 | 11,5 | ||
| H | 73,0 | 81,0 | 68,0 | 86,0 | 88,0 | 103,0 | ||
| H1 | 90,0 | 98,5 | 86,0 | 104,0 | 110,0 | 127,0 | ||
| H2 | 18,5 | 27.0 | 24.0 | 24.0 | 24.0 | 24.0 | ||
| H3 | 4.0 | 4,5 | 4.0 | 4.0 | 4.0 | 4.0 | ||
| H4 | 7.0 | 7.0 | 7.0 | 7.0 | 5.0 | 5.0 | ||
| L | 135,0 | 135,0 | 150,0 | 150,0 | 165,0 | 165,0 | ||
| L1 | 170,0 | 173,0 | 225,0 | 225,0 | 360,0 | 360,0 | ||
| L2 | 117,0 | 117,0 | 136,0 | 136,0 | 144,0 | 144,0 | ||
| W | 78,0 | 78,0 | 91,0 | 91,0 | 106,0 | 106,0 | ||
| W1 | 25,0 | 25,0 | 30,0 | 30,0 | 35,0 | 35,0 | ||
| W2 | - | 100,0 | - | 120,0 | - | 142,0 | ||
| W3 | - | - | 65,0 | 65,0 | 75,0 | 75,0 | ||
| Tamanhos de instalação | A | 25,0 | 25,0 | 30,0 | 30,0 | 35,0 | 35,0 | |
| B | 117,0 | 117,0 | 128,0 | 128,0 | 125,0 | 125,0 | ||
| od | 3,5 | 3,5 | 4,5 | 4,5 | 5,5 | 5,5 | ||
CJMM1-400,630,800,Dimensões de contorno e instalação (Conexão da placa frontal)
| Tamanhos (mm) | Código do modelo | |||||||
| CJMM1-400S | CJMM1-630S | |||||||
| Tamanhos de contorno | C | 127 | 134 | |||||
| C1 | 173 | 184 | ||||||
| E | 89 | 89 | ||||||
| F | 65 | 65 | ||||||
| G | 26 | 29 | ||||||
| G1 | 13,5 | 14 | ||||||
| H | 107 | 111 | ||||||
| H1 | 150 | 162 | ||||||
| H2 | 39 | 44 | ||||||
| H3 | 6 | 6,5 | ||||||
| H4 | 5 | 7,5 | ||||||
| H5 | 4,5 | 4,5 | ||||||
| L | 257 | 271 | ||||||
| L1 | 465 | 475 | ||||||
| L2 | 225 | 234 | ||||||
| W | 150 | 183 | ||||||
| W1 | 48 | 58 | ||||||
| W2 | 198 | 240 | ||||||
| A | 44 | 58 | ||||||
| Tamanhos de instalação | A1 | 48 | 58 | |||||
| B | 194 | 200 | ||||||
| Od | 8 | 7 | ||||||
Diagrama de recorte da conexão da placa traseira Plug In
| Tamanhos (mm) | Código do modelo | ||||||
| CJMM1-63S CJMM1-63H | CJMM1-100S CJMM1-100H | CJMM1-225S CJMM1-225H | CJMM1-400S | CJMM1-400H | CJMM1-630S CJMM1-630H | ||
| Tamanhos de conexão da placa traseira Tipo de plugue | A | 25 | 30 | 35 | 44 | 44 | 58 |
| od | 3,5 | 4,5*6 buraco profundo | 3.3 | 7 | 7 | 7 | |
| od1 | - | - | - | 12,5 | 12,5 | 16,5 | |
| od2 | 6 | 8 | 8 | 8,5 | 9 | 8,5 | |
| oD | 8 | 24 | 26 | 31 | 33 | 37 | |
| oD1 | 8 | 16 | 20 | 33 | 37 | 37 | |
| H6 | 44 | 68 | 66 | 60 | 65 | 65 | |
| H7 | 66 | 108 | 110 | 120 | 120 | 125 | |
| H8 | 28 | 51 | 51 | 61 | 60 | 60 | |
| H9 | 38 | 65,5 | 72 | - | 83,5 | 93 | |
| H10 | 44 | 78 | 91 | 99 | 106,5 | 112 | |
| H11 | 8,5 | 17,5 | 17,5 | 22 | 21 | 21 | |
| L2 | 117 | 136 | 144 | 225 | 225 | 234 | |
| L3 | 117 | 108 | 124 | 194 | 194 | 200 | |
| L4 | 97 | 95 | 9 | 165 | 163 | 165 | |
| L5 | 138 | 180 | 190 | 285 | 285 | 302 | |
| L6 | 80 | 95 | 110 | 145 | 155 | 185 | |
| M | M6 | M8 | M10 | - | - | - | |
| K | 50,2 | 60 | 70 | 60 | 60 | 100 | |
| J | 60,7 | 62 | 54 | 129 | 129 | 123 | |
| M1 | M5 | M8 | M8 | M10 | M10 | M12 | |
| W1 | 25 | 35 | 35 | 44 | 44 | 58 | |
Os disjuntores de caixa moldada (MCCBs) são dispositivos de proteção elétrica projetados para proteger o circuito elétrico contra correntes excessivas. Essa corrente excessiva pode ser causada por sobrecarga ou curto-circuito. Os MCCBs podem ser usados em uma ampla faixa de tensões e frequências, com limites de disparo ajustáveis, tanto inferiores quanto superiores. Além dos mecanismos de disparo, os MCCBs também podem ser usados como chaves de desconexão manual em casos de emergência ou manutenção. Os MCCBs são padronizados e testados para proteção contra sobrecorrente, surtos de tensão e falhas, garantindo a operação segura em todos os ambientes e aplicações. Eles funcionam efetivamente como uma chave de rearme para um circuito elétrico, interrompendo a energia e minimizando os danos causados por sobrecarga, falha de aterramento, curto-circuito ou quando a corrente excede o limite de corrente.
A aplicação de disjuntores de caixa plástica (MCCB) mudou completamente a forma de proteção de circuitos. MCCB é um disjuntor de caixa plástica amplamente utilizado em diversos setores industriais devido ao seu excelente desempenho e confiabilidade. Este artigo explorará as diferentes aplicações dos MCCBs e como eles podem ter um impacto significativo na segurança elétrica.
Os disjuntores de caixa moldada (MCCBs) são amplamente utilizados em ambientes industriais onde a proteção do circuito é fundamental. Esses disjuntores são projetados para suportar altas correntes e fornecer proteção confiável contra sobrecargas, curtos-circuitos e outras falhas elétricas. Uma das principais vantagens dos MCCBs é a capacidade de interromper automaticamente o fluxo de eletricidade em caso de falha, prevenindo assim possíveis perigos, como incêndios ou danos a equipamentos caros.
Em edifícios comerciais, os disjuntores de caixa moldada (MCCBs) são usados para proteger circuitos que alimentam sistemas de iluminação, sistemas de climatização (HVAC) e outros equipamentos críticos. Esses disjuntores garantem que, em caso de falha, a parte afetada do circuito seja desconectada sem interromper o fornecimento de energia para o restante do edifício. Essa capacidade de isolar seletivamente os circuitos defeituosos economiza tempo e evita paralisações desnecessárias em toda a instalação.
Outra aplicação importante dos disjuntores de caixa moldada (MCCB) é no campo das energias renováveis. Com a crescente demanda por energia limpa, os disjuntores de caixa moldada desempenham um papel fundamental na proteção dos sistemas elétricos de usinas solares e turbinas eólicas. Esses disjuntores garantem que a eletricidade gerada seja transferida com segurança para a rede, sem causar danos aos equipamentos ou ao pessoal.
Devido à sua construção robusta e desempenho confiável, os disjuntores de caixa moldada (MCCB) também são amplamente utilizados na indústria de petróleo e gás. O MCCB é responsável pela proteção de circuitos em diversas aplicações, incluindo plataformas offshore, refinarias e instalações de dutos. Esses disjuntores são projetados para suportar condições ambientais extremas, garantindo a operação segura e contínua de sistemas elétricos críticos.
O MCCB também entrou no mercado residencial para fornecer soluções eficientes e confiáveis para a proteção de circuitos domésticos. À medida que o número de eletrodomésticos e sistemas em uma residência aumenta, também aumenta o risco de falhas elétricas. O MCCB protege os circuitos residenciais contra sobrecargas e curtos-circuitos, proporcionando tranquilidade aos proprietários e aumentando a segurança elétrica.
Além disso, os disjuntores de caixa moldada (MCCBs) são amplamente utilizados em centros de dados para proteger equipamentos e sistemas críticos que dão suporte à infraestrutura de tecnologia da informação. Esses disjuntores são essenciais para evitar a perda de dados devido a falhas elétricas, garantindo operações ininterruptas e protegendo informações valiosas armazenadas em servidores e outros equipamentos de rede.
Em resumo, os disjuntores de caixa moldada são utilizados em diversos setores e indústrias, tornando-se uma parte importante da proteção de circuitos. Sua capacidade de suportar altas correntes, interromper o fluxo de corrente durante falhas e sua construção robusta os tornam uma escolha popular para garantir a segurança elétrica. Seja em ambientes industriais, edifícios comerciais, instalações de energia renovável, instalações de petróleo e gás, residências ou data centers, os disjuntores de caixa moldada provaram ser uma solução confiável e eficiente. À medida que a tecnologia continua a avançar, a aplicação e a importância dos disjuntores de caixa moldada só tendem a aumentar, aprimorando ainda mais a proteção e a segurança elétrica em diversos campos.