CJMM:Código empresarial
M: Disjuntor de caixa moldada
1: Design No
□:Corrente nominal do quadro
□: Código característico de capacidade de ruptura/S indica tipo padrão (S pode ser omitido) H indica tipo superior
Nota: Existem quatro tipos de polo neutro (polo N) para produtos de quatro fases. O polo neutro do tipo A não possui elemento de disparo por sobrecorrente, está sempre ligado e não é ligado ou desligado juntamente com os outros três polos.
O polo neutro do tipo B não possui dispositivo de disparo por sobrecorrente e é ligado ou desligado juntamente com os outros três polos (o polo neutro é ligado antes de ser desligado). O polo neutro do tipo C possui dispositivo de disparo por sobrecorrente e é ligado ou desligado juntamente com os outros três polos (o polo neutro é ligado antes de ser desligado). O polo neutro do tipo D possui dispositivo de disparo por sobrecorrente, está sempre ligado e não é ligado ou desligado juntamente com os outros três polos.
| Nome do acessório | Lançamento eletrônico | Liberação composta | ||||||
| Contato auxiliar, liberação por subtensão, contato alam | 287 | 378 | ||||||
| Dois conjuntos de contatos auxiliares, contato de alarme | 268 | 368 | ||||||
| Liberação de derivação, contato de alarme, contato auxiliar | 238 | 348 | ||||||
| Disparo por subtensão, contato de alarme | 248 | 338 | ||||||
| contato auxiliar de alarme | 228 | 328 | ||||||
| contato de alarme de liberação de derivação | 218 | 318 | ||||||
| Disparo por subtensão do contato auxiliar | 270 | 370 | ||||||
| Dois conjuntos de contatos auxiliares | 260 | 360 | ||||||
| Disparo por derivação, disparo por subtensão | 250 | 350 | ||||||
| contato auxiliar de liberação de derivação | 240 | 340 | ||||||
| Disparo por subtensão | 230 | 330 | ||||||
| Contato auxiliar | 220 | 320 | ||||||
| Liberação de shunt | 210 | 310 | ||||||
| Contato de alarme | 208 | 308 | ||||||
| Sem acessórios | 200 | 300 | ||||||
| 1. Valor nominal dos disjuntores | ||||||||
| Modelo | Imax (A) | Especificações (A) | Tensão nominal de operação (V) | Tensão de isolamento nominal (V) | UTI (kA) | Ics (kA) | Número de polos (P) | Distância de arco (mm) |
| CJMM1-63S | 63 | 6,10,16,20 25,32,40, 50,63 | 400 | 500 | 10* | 5* | 3 | ≤50 |
| CJMM1-63H | 63 | 400 | 500 | 15* | 10* | 3,4 | ||
| CJMM1-100S | 100 | 16,20,25,32 40,50,63, 80.100 | 690 | 800 | 35/10 | 22/5 | 3 | ≤50 |
| CJMM1-100H | 100 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-225S | 225 | 100,125, 160,180, 200.225 | 690 | 800 | 35/10 | 25/5 | 3 | ≤50 |
| CJMM1-225H | 225 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-400S | 400 | 225.250, 315.350, 400 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-400H | 400 | 400 | 800 | 65 | 35 | 3 | ||
| CJMM1-630S | 630 | 400.500, 630 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-630H | 630 | 400 | 800 | 65 | 45 | 3 | ||
| Nota: Quando os parâmetros de teste para 400V, 6A sem aquecimento forem utilizados, a liberação deve ser feita. | ||||||||
| 2. Característica de operação de interrupção em tempo inverso quando cada polo do relé de sobrecorrente para distribuição de energia é energizado simultaneamente. | ||||||||
| Item de teste Corrente (I/In) | Área de tempo de teste | Estado inicial | ||||||
| Corrente sem disparo 1,05 pol. | 2h(n>63A),1h(n<63A) | Estado frio | ||||||
| Corrente de disparo 1,3 pol. | 2h(n>63A),1h(n<63A) | Proceda imediatamente após o teste nº 1 | ||||||
| 3. Característica de operação de frenagem em tempo inverso quando cada polo de sobre- O dispositivo de proteção do motor é acionado simultaneamente. | ||||||||
| Definindo o estado inicial do tempo convencional atual | Observação | |||||||
| 1.0 em | >2h | Estado frio | ||||||
| 1,2 polegadas | ≤2h | Prosseguiu imediatamente após o teste nº 1. | ||||||
| 1,5 polegadas | ≤4min | Estado frio | 10≤In≤225 | |||||
| ≤8min | Estado frio | 225≤In≤630 | ||||||
| 7,2 polegadas | 4s≤T≤10s | Estado frio | 10≤In≤225 | |||||
| 6s≤T≤20s | Estado frio | 225≤In≤630 | ||||||
| 4. A característica de operação instantânea do disjuntor para distribuição de energia deve ser definida como 10in+20%, e a do disjuntor para proteção do motor deve ser definida como 12ln±20%. |
CJMM1-63, 100, 225, Dimensões de contorno e instalação (Conexão da placa frontal)
| Tamanhos (mm) | Código do modelo | |||||||
| CJMM1-63S | CJMM1-63H | CJMM1-63S | CJMM1-100S | CJMM1-100H | CJMM1-225S | CJMM1-225 | ||
| Tamanhos de contorno | C | 85,0 | 85,0 | 88,0 | 88,0 | 102,0 | 102,0 | |
| E | 50,0 | 50,0 | 51,0 | 51,0 | 60,0 | 52,0 | ||
| F | 23.0 | 23.0 | 23.0 | 22,5 | 25,0 | 23,5 | ||
| G | 14.0 | 14.0 | 17,5 | 17,5 | 17.0 | 17.0 | ||
| G1 | 6,5 | 6,5 | 6,5 | 6,5 | 11,5 | 11,5 | ||
| H | 73,0 | 81,0 | 68,0 | 86,0 | 88,0 | 103,0 | ||
| H1 | 90,0 | 98,5 | 86,0 | 104,0 | 110,0 | 127,0 | ||
| H2 | 18,5 | 27.0 | 24.0 | 24.0 | 24.0 | 24.0 | ||
| H3 | 4.0 | 4,5 | 4.0 | 4.0 | 4.0 | 4.0 | ||
| H4 | 7.0 | 7.0 | 7.0 | 7.0 | 5.0 | 5.0 | ||
| L | 135,0 | 135,0 | 150,0 | 150,0 | 165,0 | 165,0 | ||
| L1 | 170,0 | 173,0 | 225,0 | 225,0 | 360,0 | 360,0 | ||
| L2 | 117,0 | 117,0 | 136,0 | 136,0 | 144,0 | 144,0 | ||
| W | 78,0 | 78,0 | 91,0 | 91,0 | 106,0 | 106,0 | ||
| W1 | 25,0 | 25,0 | 30,0 | 30,0 | 35,0 | 35,0 | ||
| W2 | - | 100,0 | - | 120,0 | - | 142,0 | ||
| W3 | - | - | 65,0 | 65,0 | 75,0 | 75,0 | ||
| Tamanhos de instalação | A | 25,0 | 25,0 | 30,0 | 30,0 | 35,0 | 35,0 | |
| B | 117,0 | 117,0 | 128,0 | 128,0 | 125,0 | 125,0 | ||
| od | 3,5 | 3,5 | 4,5 | 4,5 | 5,5 | 5,5 | ||
CJMM1-400,630,800,Dimensões de contorno e instalação (Conexão da placa frontal)
| Tamanhos (mm) | Código do modelo | |||||||
| CJMM1-400S | CJMM1-630S | |||||||
| Tamanhos de contorno | C | 127 | 134 | |||||
| C1 | 173 | 184 | ||||||
| E | 89 | 89 | ||||||
| F | 65 | 65 | ||||||
| G | 26 | 29 | ||||||
| G1 | 13,5 | 14 | ||||||
| H | 107 | 111 | ||||||
| H1 | 150 | 162 | ||||||
| H2 | 39 | 44 | ||||||
| H3 | 6 | 6,5 | ||||||
| H4 | 5 | 7,5 | ||||||
| H5 | 4,5 | 4,5 | ||||||
| L | 257 | 271 | ||||||
| L1 | 465 | 475 | ||||||
| L2 | 225 | 234 | ||||||
| W | 150 | 183 | ||||||
| W1 | 48 | 58 | ||||||
| W2 | 198 | 240 | ||||||
| A | 44 | 58 | ||||||
| Tamanhos de instalação | A1 | 48 | 58 | |||||
| B | 194 | 200 | ||||||
| Od | 8 | 7 | ||||||
Diagrama de recorte da conexão da placa traseira Plug In
| Tamanhos (mm) | Código do modelo | ||||||
| CJMM1-63S CJMM1-63H | CJMM1-100S CJMM1-100H | CJMM1-225S CJMM1-225H | CJMM1-400S | CJMM1-400H | CJMM1-630S CJMM1-630H | ||
| Tamanhos de conexão da placa traseira Tipo de plugue | A | 25 | 30 | 35 | 44 | 44 | 58 |
| od | 3,5 | 4,5*6 buraco profundo | 3.3 | 7 | 7 | 7 | |
| od1 | - | - | - | 12,5 | 12,5 | 16,5 | |
| od2 | 6 | 8 | 8 | 8,5 | 9 | 8,5 | |
| oD | 8 | 24 | 26 | 31 | 33 | 37 | |
| oD1 | 8 | 16 | 20 | 33 | 37 | 37 | |
| H6 | 44 | 68 | 66 | 60 | 65 | 65 | |
| H7 | 66 | 108 | 110 | 120 | 120 | 125 | |
| H8 | 28 | 51 | 51 | 61 | 60 | 60 | |
| H9 | 38 | 65,5 | 72 | - | 83,5 | 93 | |
| H10 | 44 | 78 | 91 | 99 | 106,5 | 112 | |
| H11 | 8,5 | 17,5 | 17,5 | 22 | 21 | 21 | |
| L2 | 117 | 136 | 144 | 225 | 225 | 234 | |
| L3 | 117 | 108 | 124 | 194 | 194 | 200 | |
| L4 | 97 | 95 | 9 | 165 | 163 | 165 | |
| L5 | 138 | 180 | 190 | 285 | 285 | 302 | |
| L6 | 80 | 95 | 110 | 145 | 155 | 185 | |
| M | M6 | M8 | M10 | - | - | - | |
| K | 50,2 | 60 | 70 | 60 | 60 | 100 | |
| J | 60,7 | 62 | 54 | 129 | 129 | 123 | |
| M1 | M5 | M8 | M8 | M10 | M10 | M12 | |
| W1 | 25 | 35 | 35 | 44 | 44 | 58 | |
Entendendo o MCCB CC: Um Guia Abrangente
Na área de engenharia elétrica e distribuição de energia, o termo "MCCB" aparece com frequência. MCCB significa Disjuntor de Caixa Moldada.Disjuntore é um componente crítico na proteção de circuitos contra sobrecorrente, curto-circuito e outras falhas elétricas. Embora os disjuntores de caixa moldada CA sejam amplamente discutidos, os disjuntores de caixa moldada CC são igualmente importantes, especialmente em aplicações que envolvem sistemas de corrente contínua (CC). Este blog tem como objetivo desmistificar os disjuntores de caixa moldada CC e discutir suas funções, aplicações e vantagens.
O que é um disjuntor de caixa moldada CC?
O disjuntor de caixa moldada CC (MCCB CC) é um disjuntor especialmente projetado para proteger circuitos de corrente contínua (CC). Ao contrário dos disjuntores de corrente alternada (CA), os MCCBs CC são projetados para lidar com os desafios específicos da CC, como a ausência de um ponto de cruzamento por zero e o potencial para formação de arcos elétricos contínuos. Esses disjuntores são essenciais em diversos setores, incluindo energia renovável, transporte e telecomunicações, que utilizam comumente sistemas de energia CC.
Como funciona um disjuntor de caixa moldada CC?
A principal função de um disjuntor de caixa moldada CC é interromper a corrente em caso de sobrecarga ou curto-circuito. Aqui está uma descrição passo a passo de como ele funciona:
1. Detecção: O disjuntor de caixa moldada CC monitora continuamente a corrente que flui pelo circuito. Se a corrente exceder a capacidade nominal do disjuntor, o mecanismo de proteção é acionado.
2. Interrupção: Quando uma sobrecorrente é detectada, o disjuntor abre seus contatos para interromper o fluxo de corrente. Essa ação evita danos ao circuito e aos equipamentos conectados.
3. Extinção de Arco: Um dos principais desafios em sistemas de corrente contínua (CC) é a formação de arcos elétricos. Quando os contatos se abrem, um arco se forma devido à continuidade da corrente contínua. Disjuntores de caixa moldada para CC são equipados com mecanismos de extinção de arco, como câmaras de extinção de arco ou dispositivos de extinção de arco por sopro magnético, para dissipar os arcos com segurança.
4. Reinicialização: Após a correção da falha, o disjuntor pode ser reinicializado manual ou automaticamente para retomar a operação normal.
Principais características do disjuntor de caixa moldada CC
Os disjuntores de caixa moldada para corrente contínua possuem diversas características que os tornam adequados para aplicações em corrente contínua:
- Alta capacidade de interrupção: Projetados para suportar altas correntes de curto-circuito, garantem proteção confiável mesmo em ambientes agressivos.
- Unidades de disparo térmico e magnético: Essas unidades oferecem dupla proteção, respondendo a sobrecorrente prolongada (térmica) e curto-circuito momentâneo (magnético).
- Configurações de disparo ajustáveis: Muitos disjuntores de caixa moldada CC oferecem configurações de disparo ajustáveis, permitindo a personalização para atender a requisitos específicos da aplicação.
- Design compacto: O design da carcaça moldada garante um formato compacto e robusto, facilitando a integração em diversos sistemas.
Aplicação do disjuntor de caixa moldada CC
Os disjuntores de caixa moldada CC são amplamente utilizados em diversos setores e cenários:
- Energias renováveis: Sistemas de energia solar, turbinas eólicas e sistemas de armazenamento de energia frequentemente utilizam disjuntores de caixa moldada para corrente contínua (CC) para proteger seus circuitos.
- Veículos Elétricos (VE): Disjuntores de caixa moldada CC são usados em estações de carregamento de veículos elétricos e em sistemas de bordo para garantir uma operação segura.
- Telecomunicações: A infraestrutura de telecomunicações que depende fortemente de energia CC utiliza esses disjuntores para proteger equipamentos críticos.
- Automação Industrial: Disjuntores CC de caixa moldada são utilizados em diversos processos industriais que empregam motores e acionamentos CC.
Benefícios da utilização de disjuntores de caixa moldada CC
- Segurança aprimorada: Os disjuntores de caixa moldada CC aumentam a segurança dos sistemas elétricos e do pessoal, fornecendo proteção confiável contra sobrecorrente e curto-circuito.
- TEMPO DE INATIVIDADE REDUZIDO: A rápida interrupção de falhas minimiza os danos e reduz o tempo de inatividade, garantindo a operação contínua de sistemas críticos.
- Custo-benefício: Evita danos a equipamentos caros e reduz os custos de manutenção, tornando os disjuntores de caixa moldada CC uma solução com excelente relação custo-benefício.
Resumindo
O disjuntor de caixa moldada para corrente contínua (CC) é um componente indispensável em sistemas elétricos modernos, proporcionando forte proteção e garantindo a operação segura de circuitos CC. Compreender suas funções, características e aplicações pode ajudar engenheiros e técnicos a tomar decisões informadas no projeto e na manutenção de sistemas de energia CC. À medida que a demanda por energia renovável e veículos elétricos continua a crescer, a importância dos disjuntores de caixa moldada para CC só aumentará, tornando-os uma parte essencial de nossa infraestrutura de energia.